Direkte und indirekte Metallierung von *endo*-Dicyclopentadien *. ¹¹⁹Sn- und ¹³C-NMR Studie stannylierter Folgeprodukte

J. Blümel und F.H. Köhler*

Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstr. 4, D-8046 Garching (B.R.D.)

(Eingegangen den 12. August 1987)

Abstract

endo-Dicyclopentadiene (1) can be metalated by use of simple procedures with good overall yields. The attack occurs at the various vinyl, rather than at the allyl, positions of 1 as was confirmed by trapping the carbanions with Me₃SnCl. When t-BuLi/TMEDA are used, the 8- and 9-stannyl derivatives (3 and 4) are formed, whereas an excess of n-BuLi/t-BuOK leads to doubly stannylated derivatives with Me_3Sn groups in positions 4/8 (6), 4/9 (7), and 3/9 (8) in addition to 3 and 4. Furthermore the latter reaction yields 5,5-bis(trimethylstannyl)cyclopentadiene (5). With stoichiometric amounts of n-BuLi/t-BuOK the formation of 3 and 4 predominates over that of 5-8. 5 is obtained from 1 after deprotonation at the allyl position, followed by an extremely fast retro-Diels-Alder reaction and then by further deprotonation. This follows from two experiments: (1) exo- and endo-5-trimethylstannyl-endo-dicyclopentadiene (11 and 12) which are synthesized from 1 in three steps give cyclopentadienyllithium and 1 when treated with methyllithium at -78°C; (2) cyclopentadiene reacts with an excess of n-BuLi/t-BuOK and Me₃SnCl to give 5. When 12 is heated syn-10-trimethylstannyl-endo-dicyclopentadiene (13) is obtained. The eight stannyl derivatives of 1 are identified mainly from the following NMR parameters: $\delta(^{119}\text{Sn})$, $\delta(^{13}\text{C})$, $\delta(^{1}\text{H})$, $^{n}J(^{119/117}\text{Sn}-^{13}\text{C})$, and ⁶J(¹¹⁹Sn-¹¹⁹/¹¹⁷Sn). The ¹³C NMR satellite spectrum of 1 yields the isotope shifts ${}^{1}\Delta^{13}C(i)({}^{13}C(i))$ and ${}^{1}J({}^{13}C-{}^{13}C)$. The latter lead to the revision of earlier signal assignments.

Zusammenfassung

endo-Dicyclopentadien (1) lässt sich in einfachen Reaktionen mit brauchbaren Gesamtausbeuten metallieren. Dabei erfolgt der Angriff eher in den verschiedenen

^{*} $3a\alpha, 4\alpha, 7\alpha, 7a\alpha$ -Tetrahydro-4,7-methano-1*H*-inden oder Tricyclo[5.2.1.0^{2.6}]deca-3,8-dien.

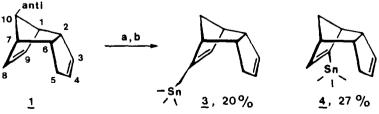
Vinyl- als in der Allylposition von 1, was nach Abfangen der Carbanionen mit Me₃SnCl nachgewiesen wird. Mit t-BuLi/TMEDA finden sich die 8- und 9-Stannylderiyate (3 und 4), während ein Überschuss von n-BuLi/t-BuOK neben 3 und 4 zu zweifach stannylierten Derivaten führt, die Me₃Sn-Gruppen in den Positionen 4/8 (6), 4/9 (7) und 3/9 (8) haben. Die letzte Reaktion liefert zusätzlich 5,5-Bis(trimethylstannyl)cyclopentadien (5). Mit stöchiometrischen Mengen von n-BuLi/t-BuOK ist die Bildung von 3 und 4 gegenüber 5-8 bevorzugt. 5 entsteht aus 1 nach Deprotonierung in Allylstellung, extrem schneller Retro-Diels-Alder-Reaktion und weiterer Deprotonierung. Das folgt aus zwei Experimenten: (1) exo- und endo-5-Trimethylstannyl-endo-dicyclopentadien (11 und 12), die in drei Schritten aus 1 synthetisiert werden, ergeben mit Methyllithium bei -78°C Cyclopentadienyllithium und 1; (2) Cyclopentadien reagiert mit n-BuLi/t-BuOK im Überschuss und Me₃SnCl zu 5. Nach Erhitzen von 12 wird syn-10-Trimethylstannyl-endo-dicyclopentadien 13 erhalten. Die acht Stannvlderivate von 1 werden vor allem durch die folgenden NMR-Daten charakterisiert: $\delta(^{119}\text{Sn})$, $\delta(^{13}\text{C})$, $\delta(^{1}\text{H})$, $^{n}J(^{119,117}\text{Sn}-^{13}\text{C})$ und ⁶J(¹¹⁹Sn-¹¹⁹/₁₁₇Sn). Das ¹³C-NMR-Satellitenspektrum von 1 liefert die Isotopenverschiebungen ${}^{1}\Delta^{13}C(i)(C(i))$ und ${}^{1}J({}^{13}C-{}^{13}C)$. Letztere führen zur Revision früherer Signalzuordnungen.

Dicyclopentadien 1 verdient Aufmerksamkeit wegen seiner Ähnlichkeit zu Bicyclo[3.2.1]octa-2,6-dien (2). Für 2 haben wir gezeigt, dass direkte Metallierung möglich ist [1], wobei unter geeigneten Bedingungen das Bicyclo[3.2.1]octa-2,6-dienylanion 2a entsteht. Es gibt vielfältige Studien von 2a, die meist von der Frage

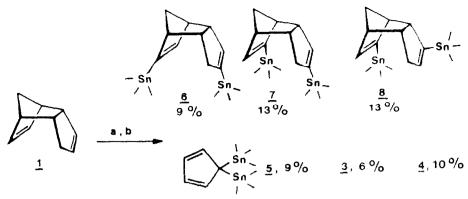
beherrscht werden, worauf seine Stabilität zurückzuführen ist [2]: Von den Autoren werden Homoaromatizität [2c,d,f] oder – in Form des Lithium-Derivates – π -Chelatisierung [2h,i] favorisiert. Deprotonierung von 1 in Position 5 sollte zum Tricyclo[5.2.1.0^{2.6}]deca-3,8-dien-5-ylanion (1a) führen. Im Vergleich mit 2a ist zu spekulieren, wie die Stabilität von 1a durch folgende Faktoren beeinflusst wird: (a) geänderte gegenseitige Orientierung von Olefin- und Allylteil, (b) Trennung der beiden π -Systeme durch zwei weitere sp^3 -C-Atome, (c) Retro-Diels-Alder-Reaktion.

In dieser Arbeit prüfen wir die Frage, wie die Deprotonierung von 1 verläuft. Die Untersuchung ist so konzipiert, dass darüber hinaus ein Satz von ¹¹⁹Sn- und ¹³C-NMR-Daten stannylierter Dicyclopentadiene erhalten wird. Denn nach Abfangen der Anionen von 1 mit Me₃SnCl sollten, entsprechend unseren Erfahrungen mit 2, verschiedene Isomere erhalten werden. Die hier verfolgte Bildung von Metall–Kohlenstoff-σ-Bindungen soll das *endo*-Dicyclopentadien-System unverändert lassen. Im Gegensatz dazu haben frühere Arbeiten [3] gezeigt, dass die direkte Metallierung von 1 mit Übergangsmetallverbindungen eine Addition einschliesst und mit bemerkenswerter Selektivität zu Derivaten des 8,9-Dihydro-*endo*-dicyclopentadiens führt.

Ergebnisse und Diskussion


A. Die Deprotonierung von Dicyclopentadien 1

Mit t-Butyllithium, das mit N, N, N', N'-Tetramethylethylendiamin (TMEDA) aktiviert wurde, reagiert 1 bereits bei tiefer Temperatur. Gemäss Schema 1 erfolgt dabei eine Deprotonierung an den C-Atomen 8 und 9, was sich nach Abfangen mit Me₃SnCl bequem nachweisen lässt. Es entstehen die Stannylderivate 3 und 4, die mittels ¹¹⁹Sn- und ¹³C-Daten (vgl. Abschnitt D) identifiziert werden können. Daneben liegen nach dem Aufarbeiten unumgesetztes 1 und N-Trimethylstannylmethyl-N, N', N'-trimethylethylendiamin vor. Letzteres bildet sich nach konkurrierender Deprotonierung von TMEDA [4]. Da das ¹³C-NMR-Spektrum auch bei gutem Signal/Rausch-Verhältnis keine weiteren Bestandteile zeigt, werden die Ausbeuten unabhängig durch Integrieren des ¹¹⁹Sn- und ¹³C-NMR-Spektrums bestimmt; die Berechnung erfolgt relativ zu umgesetztem 1.

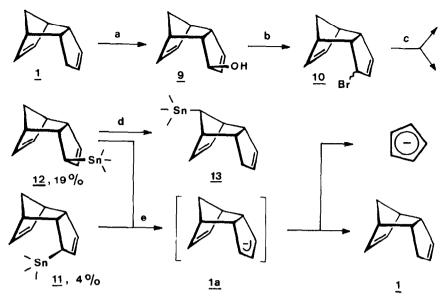

Auch mit n-Butyllithium/Kalium-t-butylat reagiert 1 bei -78° C schnell. Schema 2 fasst unsere Ergebnisse für den Fall eines grossen Überschusses von Metallierungsreagenz zusammen. Die Schemata 1 und 2 machen deutlich, dass die Metallierung in mehrfacher Hinsicht ungewöhnlich verläuft. Durch t-BuLi/TMEDA werden die vermeintlich acidesten Wasserstoffatome in der Allylposition 5 von 1 nicht angegriffen. Stattdessen erfolgt die Metallierung mit bemerkenswerter Regioselektivität in Vinylstellung: nicht die Positionen 3/4, sondern (in den Grenzen der Messgenauigkeit ausschliesslich) 8/9 sind betroffen. Die Regioselektivität lässt sich darauf zurückführen, dass C(3/4) Teil eines Cyclopentens, C(8/9) hingegen Teil eines Norbornens und damit eines gespannten Ringes sind. Es ist seit langem bekannt, dass Protonen an gespannten Ringen erhöhte Reaktivität zeigen [5]. Eine zu 1 analoge Reaktivität haben wir bereits für 2 gefunden [1a,c].

Die Deprotonierung in Allylstellung lässt sich für 2 erzwingen, wenn n-BuLi/t-BuOK verwendet wird [1b]. 1 hingegen wird unter diesen Bedingungen bevorzugt in den Vinylpositionen angegriffen. Mit einem Äquivalent n-BuLi/t-BuOK entstehen aus 1 12.5% 3, 36.0% 4 sowie geringe Mengen zweifach stannylierter Verbindungen (5, 6, 7 und 8 mit zusammen < 5%). Mit drei Äquivalenten n-BuLi/t-BuOK wird 1 gemäss Schema 2 zunehmend doppelt deprotoniert. Das Prinzip der optimalen Ladungstrennung legt nahe, dass die zweite Deprotonierung an den weniger aktiven Positionen 3/4 erfolgt, was durch 6, 7 und 8 bestätigt wird. Es fehlt ein Isomer, das Stannylreste an C(3/8) trägt. Aus den Ausbeuten von 3 und 4 folgt, dass die Reaktion in Position 9 stets gegenüber Position 8 bevorzugt ist. Entweder bildet sich also das 3,8-Dicarbanion von 1 nicht, oder es kann mit unserer Methodik nicht nachgewiesen werden.

Die Tatsache, dass auch 5,5-Bis(trimethylstannyl)cyclopentadien 5 entsteht (Schema 2), ist ein wichtiger Befund. Demnach muss nämlich für 1 auch eine

Schema 1. a: t-BuLi/TMEDA, -78°C; b: Me₃SnCl, -78°C.

Schema 2. a: n-BuLi/t-BuOK, -78°C; b: Me₃SnCl, -78°C.


Deprotonierung möglich sein, die zu seiner Spaltung führt. Als Arbeitshypothese bietet sich die gesuchte Metallierung von 1 in Position 5 an. In einer Retro-Diels-Alder-Reaktion entstehen anschliessend Cyclopentadien und das Cyclopentadienylanion, die weiterreagieren. Zur Überprüfung der Hypothese dienen die folgenden Experimente.

B. Synthese von 5-Trimethylstannyldicyclopentadien und dessen Reaktion mit Methyllithium

Da bei der direkten Metallierung von 1 stets verschiedene Carbanionen zugleich entstehen, muss zum Studium des Dicyclopentadien-5-ylanions 1a eine selektive Synthese angewandt werden. Der eingeschlagene Weg ist im Schema 3 skizziert. Die in Schritt a und b hergestellten isomeren Bromide 10 [6] werden in die Stannylderivate 11 und 12 übergeführt, deren destillative Reinigung nicht bei hoher Temperatur erfolgen darf, denn ab 150°C bildet sich 13. Wir nehmen an, dass 13 gemäss Schema 4 aus 12 durch eine Cope-Umlagerung gebildet wird; denn für endo-5-Hydroxy-endo-dicyclopentadien ist dieses Verhalten nachgewiesen worden [7]. Auch das zu 13 isomere anti-Derivat sollte sich bilden, seine Menge ist für den Nachweis bisher jedoch zu gering.

Der Vorteil des Weges in Schema 3 liegt in den sehr milden Bedingungen für den Stannyl-Lithium-Austausch (Schritt e). Wenn die Umsetzung mit vorgekühlten Reagenzien im NMR-Rohr durchgeführt wird, so lässt sich 10-15 min nach Vereinigung der Reaktanden ein ¹³C-NMR-Spektrum erhalten, ohne dass ca. - 78°C überschritten werden. In wiederholten Ansätzen bildet sich nicht 1a. sondern das Cyclopentadienylanion (Cp⁻) und 1 im Verhältnis 2/1. Zusätzlich finden sich Nebenprodukte, deren Signale folgende Moleküle ausschliessen: 11, 12 und exo-Dicyclopentadien; insbesondere kann kein Cyclopentadien nachgewiesen werden.

Diese Befunde sprechen dafür, dass sich das gesuchte Anion 1a zwar bildet, dass in einer Retro-Diels-Alder-Reaktion aber sehr rasch Cp abgespalten wird. Bedeutung gewinnt die Reaktion im Vergleich mit der Spaltung von 1, die bekanntlich erst ab ca. 160°C präparativ nutzbar wird. Der Gang zum Anion setzt also die Aktivierungsbarriere der Retro-Diels-Alder-Reaktion herab; entsprechendes ist bereits am 7-Phenylnorbornenylanion [8] und an Cyano-endo-dicyclopentadienen [9] eindrucksvoll gezeigt worden. Eine so drastische Beschleunigung der Spaltung wie für 1a ist unseres Wissens bisher jedoch unbekannt.

Schema 3. a: SeO_2/H_2O , Dioxan; b: PBr_3/Et_2O , Pyridin; c: Me_3SnLi/THF , -78°C; d: ΔT ; e: $MeLi/Et_2O/THF$, -78°C.

Schema 4

Neben Cp⁻ sollte sich aus **1a** Cyclopentadien bilden; stattdessen finden wir bereits nach 15 min Reaktionsdauer bei -78°C nur sein Dimer **1**. Eine Dimerisierung von Cyclopentadien ist wenig wahrscheinlich, da eine 0.3 molare Lösung bei 25°C nach 46 h nur 3% **1** bildet [10]. Wir nehmen an, dass zwischen **1a** und Cyclopentadien eine schnelle Ummetallierung zu **1** und Cp⁻ stattfindet.

C. Hinweise auf zweifach deprotoniertes Cyclopentadien

Die Ergebnisse in Abschnitt B sprechen dafür, dass auch bei der direkten Metallierung von 1 mit n-BuLi/t-BuOK neben anderen Anionen (vgl. Schema 2) 1a entsteht, das sofort gespalten wird. Während nach dem Stannyl-Lithium-Austausch mit 11 und 12 (Schema 3) Cp⁻ entsteht, finden wir nach Abfangen der Anionen in Schema 2 nicht Mono- sondern Distannylcyclopentadien 5. Wir führen das darauf zurück, dass n-BuLi/t-BuOK verglichen mit MeLi wesentlich stärker metalliert und

Schema 5. a: n-BuLi/t-BuOK, -78°C; b: Me₃SnCl, -78°C.

 $\delta(^{13}\text{C}), \delta(^{19}\text{Sn}), ^{7}(^{197113}\text{Sn}-^{13}\text{C})^{a}$ und $^{6}\text{J}(^{119}\text{Sn}-^{1197117}\text{Sn})^{a}$ von stannylierten ende-Dicyclopentadienen b sowie $\delta(^{13}\text{C})$ und $^{1}\text{J}(^{13}\text{C}-^{13}\text{C})$ von ^{1}b Tabelle 1

Kern und Position ^c X(i)	ا م	т	4	~	7 e	ა ∝	Ξ	2	13
C(1)	45.86	47.68	50.61	47.17	50.02	50.89	45.53	45.83	49.19
	28.9,C(2)	51.4	39.1	11.4/7.1	39.4/6.6	39.6/2.4	5.4	7.9	٠.,
	38.9,C(9)	40.0	37.4	48.9/	37.4/	37.7/			
	32.2,C(10)								
C(2)	55.45	55.42	55.27	57.43	57.11	61.97	55.46	54.51	56.91
	28.9,C(1)	10.7	3.4	11.0/63.6	3.9/63.1	4.2/54.5	11.5	<i>I</i> >	58.4
	43.5,C(3) 36.6,C(6)			/60.6	/60.4	/52.1			55.9
C(3)	132.33	131.89 "	132.18 "	142.28	141.90	144.89	127.65	126.38	132.15 "
	43.5,C(2)	I.I	1.2	8.6/42.5	< 1 /42.8	< 1 /454.1	58.6	49.9	7.3
	8, C(4)			/40.6	(41.1	/434.0	56.1	47.7	
C(4)	132.43	132.94 "	132.86 "	144.96	144.86	142.00	135.50	135.30	131.40 h
	8, C(3)	<i>l</i> >	1.2	< 1 /455.8	< 1 /464.4	< 1 /48.9	26.3	38.6	4.4
	8. C(5)			/435.3	/443.6	/ 46.7		36.9	
C(5)	35.18	35.09	35.26	40.63	40.68	36.91	36.75	34.14	34.63
	/, C(4)	<i>l</i> >	1.2	< 1 /54.0	< 1 /53.8	< 1 /64.8	369.5	371.3	7.0
	36.9.C(6)			/51.6	7.81.4	/62.1	353.3	354.8	
C(6)	41.87	41.72	42.01	42.58	42.91	42.93	46.37	45.86	43.30
	36.6,C(2)	3.4	10.3	3.9/36.9	36.9/10.0	10.5/39.9	16.6	27.6	59.8
	36.9,C(5)			/35.0	35.5/	/38.4	15.9	26.4	57.0
	こうが、スマ								

50.22 5.4	133.24 6.8	137.02 7.1	52.10 f		-9.21 319.5 305.3	-15.3	
47.12 35.6 34.0	131.86 < 1	136.48 < I	49.26 2.0	-11.05 309.0 295.3		- 3.8	
47.67 39.9 38.0	132.47 < <i>I</i>	137.60 < 1	50.51 2.3	-8.08 310.2 296.6		-15.7	
47.69 51.4/ < I 48.4/	146.18 27.6/<1 26.7/	149.43 477.8/ < 1 456.3/	52.04 20.5/ < I	-9.18 344.8 329.4	-8.63 350.2 334.5	-50.1	-51.5
47.59 51.6/ < 1 49.6/	143.27 28.6/ < 1 27.4/	148.75 476.3/ < 1 455.1/	51.10 21.8/8.1	-10.07 344.8 329.4	-9.56 350.7 335.0	- 51,3 5.0	-53.0
50.86 40.1/ < 1 38.1/	145.84 472.4/ < 1 451.4/	147.70 28.6/ < I 27.1/	51.46 19.6/7.8	-9.73 344.3 328.7	9.43 349.4 333.8	-52.1 3.1	49.5 3.1
48.30 50.9 48.7	144.00 28.9 27.4	149.90 477.6 456.5	50.99 23.0 21.5		-9.50 352.9 337.2		-52.8
51.56 39.6 37.9	145.99 / /	148.66 28.9 27.4	51.34 20.8 19.8		-9.41 351.6 336.2		-49.9
46.84 29.9,C(6) 38.1,C(8) 31.8,C(10)	132.71 8, C(7) 66.0,C(9)	136.43 38.9,C(1) 66.0,C(8)	50.78 32.2,C(1) 31.8,C(7)				
C(7)	C(8)	(6)	C(10)	C(a3-5)	C(a8~10)	Sn(35)	Sn(8-10)

^a Kursiv, Werte in Hz; der obere Wert betrifft ¹¹⁹Sn, der untere ¹¹⁷Sn; sofern die Auflösung die Unterscheidung ^{119/117}Sn nicht erlaubt, ist nur ein Wert angegeben.
^b 1,3,4,6,7,8 gelöst in Aceton-d₆, 11-13 in CDCl₃. ^c vgl. Schema 1. ^a Kursiv: ¹f(¹³C-¹³C(f)) in Hz. ^c Die jeweils rechts stehenden Werte von "J(^{119/117}Sn-¹³C) stammen von Sn(3) bzw. Sn(4). ^f Nicht beobachtet wegen schlechtem Signal/Rausch-Verhältnis. ^g Satelliten wegen Signalüberlagerung nicht gesichert. ^h Vertauschung von C(3/4) nicht ausgeschlossen.

Cp⁻ ein weiteres Proton entreisst. Diese Interpretation wird durch die scharfe Deprotonierung von Cyclopentadien gemäss Schema 5 gestützt, die nach Abfangen 17% 5 (nicht optimiert, daneben entstehen höher stannylierte Derivate) ergibt. Auch aus präparativer Sicht ist diese Reaktion von Wert: Einerseits ist 5 eine nützliche Startverbindung für die Chemie von π-Komplexen, deren Reaktivität im Cp-Liganden liegen soll, andererseits war 5 bisher nur auf Umwegen zugänglich [11].

D. 119Sn- und 13C-NMR-Daten

Die Signalzuordnung erfordert aus zwei Gründen Erläuterung: zum einen gründet sich die Beweisführung in Abschnitt A–C auf die NMR-Daten, zum anderen sind die meisten Moleküle sehr unsymmetrisch. Selbst vom bekannten und mehrfach mit 13 C-NMR untersuchten 1 ist nur C(5/10) gut gesichert [12]. Ausgehend von Inkrementrechnungen an 3 und 4 erweist sich die Zuordnung von C(3/9) in 1 als unzutreffend. Unabhängige Überprüfung mit $^{13}C^{-13}C$) ergibt die eindeutige Zuordnung in Tabelle 1. Verunreinigungen im Intensitätsbereich der ^{13}C -Satelliten können die Unterscheidung von C(8/9) erschweren. Die Daten in Tabelle 1 stimmen mit dem zweidimensionalen INADEQUATE-Experiment [13] überein.

Für die restlichen ¹³C-Signale in Tabelle 1 gelten folgende Zuordnungskriterien. (1) Die $C(\alpha)$ folgen aus den typischen δ -Werten; die Unterscheidung $C(\alpha 4/8)$. $C(\alpha 4/9)$ und $C(\alpha 3/9)$ in 6-8 erfolgt durch ${}^{1}J({}^{119}Sn-{}^{13}C)$ im Vergleich mit 3 und 4. (2) Sämtliche C(5) und C(10) sind mittels δ (im Vergleich zu 1) und mittels ${}^{1}J({}^{13}C - {}^{1}H)$ -Multiplett bzw. ${}^{1}J({}^{119}Sn - {}^{13}C)$ (11-13) zu erkennen. (3) Unter den tertiären sp^3 -C-Atomen C(1/7) und C(2/6) geben sich alle C(2) nach Vergleich mit 1 durch die typischen δ -Werte zu erkennen. Eine Bestätigung dafür ergibt sich im Fall von 3, 4 und 6-8 aus ${}^{3/4}J({}^{119}\text{Sn}(8/9) - {}^{13}\text{C})$ und ${}^{2/3}J({}^{119}\text{Sn}(8/9) - {}^{13}\text{C})$, die zugleich C(2/6) von C(1/7) unterscheiden (für typische Werte von ${}^{n}J({}^{119}\mathrm{Sn}{}^{-13}\mathrm{C})$ vgl. Ref. [14]). Damit liegen auch die C(6) von 3, 4 und 6-8 fest. (4) Für 11 und 12 wird C(6) durch das β -Inkrement von 4.0 und 4.5 ppm (vgl. unten) identifiziert. Zugleich finden sich typische Werte für ${}^2J({}^{119}\mathrm{Sn}-{}^{13}\mathrm{C})$. Für 13 ergibt sich C(6) aus ${}^{3}J({}^{119}\mathrm{Sn}{}^{-13}\mathrm{C})$ in guter Übereinstimmung mit dem in (3) bereits zugeordneten C(2). (5) Die Unterscheidung von C(1/7) der Moleküle 3, 4 und 6-8 basiert auf dem B-Inkrement (vgl. (4)) und ${}^{2/3}J({}^{119}\text{Sn}-{}^{13}\text{C})$. (6) Für 11 und 12 unterscheiden sich C(1) und C(7) durch $^{3/4}J(^{119}Sn-^{13}C)$, für 13 durch den Vergleich mit 1. wobei das *β*-Inkrement für $\delta(^{13}C(1/7))$ erwartungsgemäss praktisch gleich gross ist. (7) Unter anderem aus dem kleinen Wert für $J(^{119}\text{Sn}-^{13}C(5))$ folgt, dass der Me₃Sn-Rest in 3 und 4 an C(8/9) sitzen muss. C(8/9) sind durch $^{1/2}J(^{119}Sn-^{13}C)$ zu unterscheiden, nicht hingegen C(3/4); der Zuordnungsvorschlag in Tabelle 1 orientiert sich an 1. (8) Für **6–8** folgt z.B. aus ${}^6J({}^{119}\text{Sn}-{}^{119/117}\text{Sn})$, dass die Me₃Sn-Reste nicht an zwei benachbarten sp²-C-Atomen sitzen können. Daraufhin gelingt die Unterscheidung von C(4/8) in **6**, von C(4/9) in **7** und von C(3/9) in **8** durch ${}^{1}J({}^{119}\mathrm{Sn} - {}^{13}C)$ im Vergleich mit 3 und 4. Analog können C(3/9) in 6, C(3/8) in 7 und C(4/8) in 8 durch ${}^2J({}^{119}\text{Sn}-{}^{13}\text{C})$ identifiziert werden. (9) ${}^{4/5}J({}^{119}\text{Sn}-{}^{13}\text{C})$ und ${}^{2/3}J({}^{119}\text{Sn}-{}^{13}\text{C})$ grenzen C(8/9) von 11 und 12 gegenüber C(3/4) ab. Die Zuordnung von C(8) und C(9) folgt der in 1, während die von C(3) und C(4) aus $^{2/3}J(^{119}Sn-^{13}C)$ hervorgeht. Hier findet sich ${}^{3}J > {}^{2}J$, weil für ${}^{3}J$ ein günstiger Diederwinkel vorliegt [15]. Die olefinischen C-Atome C(8/9) in 13 heben sich von C(3/4) durch das γ -Inkrement ab: wie in 3, 4, 6, 7, 8, 11 und 12 sind die C-Atome in γ-Stellung zum Mc₃Sn-Rest bis zu 2.4 ppm gegenüber 1 zu hoher Frequenz verschoben. Im Vergleich mit 1 sind

darüber hinaus zwar C(8) und C(9) durch ihre $\delta(^{13}\text{C})$, nicht aber C(3/4) einzeln zu identifizieren. Unterstellt man, dass $^4J(^{119}\text{Sn}-^{13}\text{C}) > ^5J(^{119}\text{Sn}-^{13}\text{C})$, so folgt für C(3/4) von 13 der Zuordnungsvorschlag in Tabelle 1. Argumente für die Zuordnung der $^{119}\text{Sn-NMR-Signalpaare}$ für 6–8 sind der relative Isomerenanteil und der Vergleich mit den gesicherten $\delta(^{119}\text{Sn})$ von 3 und 4.

Einige der Isomeren liegen im Gemisch vor. Die Trennung der ¹³C- und ¹¹⁹Sn-NMR-Signalsätze ist jedoch aufgrund verschiedener Intensitäten, insbesondere wenn der Kern-Overhauser-Effekt vermieden wird, möglich. Die weitere Zuordnung der Signalsätze erfolgt für 3 und 4 mittels ^{2/3}J(¹¹⁹Sn-¹³C) zu C(1/7). Was die zweifach stannylierten *endo*-Dicyclopentadiene angeht, so werden 6 und 7 durch Vergleich der NMR-Daten mit 3 und 4 erkannt; 8 bleibt übrig. Schliesslich sind auch 11 und 12 durch die charakteristischen ¹H-Resonanzen für die *endo/exo*-Protonen in Position 5 zu unterscheiden (¹H-NMR-Daten vgl. Experimenteller Teil).

Hinweise auf ausgewählte NMR-Daten. Vergleicht man in Tabelle 1 die $\delta(^{13}C)$ von 1 mit den $\delta(^{13}C)$ der stannylierten Derivate, so spiegelt sich der Einfluss des Me₃Sn-Restes in typischen Inkrementen wider. Wie üblich ist zu beachten, welche Hybridisierung am beobachteten C-Atom vorliegt, wieviele Bindungen es vom Sn-Atom entfernt ist (zwei Bindungen ergeben ein β -Inkrement usw.) und von welcher Art das C-Atom ist, an dem der Me₂Sn-Rest sitzt, Me₂Sn in Vinylstellung bewirkt für Signale von sp^2 -C-Atomen ein α -Inkrement von 12.3–13.5 ppm sowie ein β-Inkrement von 9.6-13.5 ppm, was erste Erfahrungen [16] bestätigt. Für Signale von sp^3 -C-Atomen ergibt sich ein β -Inkrement von 4.0–6.5 ppm. Das γ -Inkrement beträgt -0.2-2.0 ppm und ähnelt dem Befund in Ref. 17. Es ist im Mittel grösser, wenn sp²- statt sp³-C-Atome die Weiterleitung des Effektes besorgen; Signale von C-Atomen, auf die zwei Inkremente wirken, fallen aus dem Rahmen. Aus Tabelle 1 lassen sich weitere Inkremente ableiten, die jedoch meist nur durch zwei Beispiele belegt sind. Das γ-Inkrement von ca. -5 ppm, das allylständige Me₂Sn-Reste auf Signale von sp²-C-Atomen ausüben, weicht dabei aber so auffällig von anderen Inkrementen ab, dass es als typisch gelten kann.

Die Ermittlung von $J(^{13}\mathrm{C}-^{13}\mathrm{C})$ macht $^{13}\mathrm{C}$ -Isotopenverschiebungen $\Delta^{13}\mathrm{C}(i)$ zugänglich, die durch benachbarte $^{13}\mathrm{C}$ -Atome $^{13}\mathrm{C}(j)$ verursacht werden. Die Analyse der $^{13}\mathrm{C}$ -Satellitenspektren von 1 als AB-Spinsysteme ergibt die Daten in Tabelle 2.

Tabelle 2	
¹³ C-Isotopeneffekte über eine Bindung ${}^{1}\!\Delta^{13}\mathrm{C}(i)({}^{13}\mathrm{C}(j))$ auf $\delta({}^{13}\mathrm{C}(i))$ in ppb a für 1	,

i, j	$^{1}\Delta^{13}C(i)$ $(^{13}C(j))$	i, j	$^{1}\Delta^{13}C(i)$ $(^{13}C(j))$	<i>i. j</i>	$^{1}\Delta^{13}C(i)$ $(^{13}C(j))$
1,2	16	2,6	10	6,7	11
2,1	6	6,2	11	7,6	10
1,9	13	3,4	d	7,8	14
9,1	9 °	4,3	d	8,7	8
1,10	10	4,5	5 °	7,10	12
10,1	10	5,4	9	10,7	9
2,3	11	5,6	6	8,9	29
3,2	6	6,5	10	9,8	30

^a Genauigkeit 1.1 ppb/Datenpunkt. ^b Numerierung vgl. Schema 1. ^c Nur durch Satelliten am Signal des sp³-C-Atoms belegt. ^d Satelliten wegen Signalüberlagerung nicht gesichert.

Gemessen an Literaturdaten [18] sind ${}^{1}\Delta^{13}C(8)({}^{13}C(9))$ und ${}^{1}\Delta^{13}C(9)({}^{13}C(8))$ besonders gross. Dies ist ein Hinweis darauf, dass $\Delta^{13}C(i)({}^{13}C(j))$ wächst, wenn der Abstand zwischen den beteiligten Atomen sinkt. Ähnliches hat sich bei $\Delta^{13}C({}^{2}H)$ gezeigt [19]. Auffällig sind auch einige kleine Werte in Tabelle 2; eine Systematik ist derzeit jedoch nicht abzuleiten. Unter den Kopplungen sind ${}^{n}J({}^{119}, {}^{13}Sn, {}^{13}C)$ von grösstem Wert für die Signalzuordnung. Dabei reichen für n=3 selbst grobe Abschätzungen des zugehörigen Diederwinkels aus, um C-Atome zu unterscheiden: eine genauere Korrelation vom Karplus-Typ ist in Arbeit. Die weitesten Kopplungen entsprechen n=5 mit Werten zwischen <1 bis 7.8 Hz. Die Tatsache, dass ${}^{6}J({}^{119}Sn-{}^{119}/{}^{117}Sn)$ zu beobachten ist, liegt möglicherweise an den Doppelbindungen, die auf den Kopplungswegen liegen. Hier sind weitere Daten wünschenswert, denn andererseits variiert ${}^{5}J({}^{119}Sn-{}^{119}/{}^{117}Sn)$ zwischen <5 und 370 Hz. ohne dass eine klare Abhängigkeit von ungesättigten Bindungen erkennbar wird [20].

Schlussfolgerungen

Lithium- oder kaliumorganische Derivate von endo-Dicyclopentadien 1 sind ausreichend stabil, um sie in Form von Abfangprodukten zu charakterisieren, solange die Vinylpositionen von 1 betroffen sind. Bei geeigneter direkter Metallierung reagiert selektiv die norbornen-artige Doppelbindung. Die andere Doppelbindung lässt sich nur in einer Zweit-Deprotonierung angreifen.

Die Zusammenhänge können bequem entschlüsselt werden, wenn man die Trimethylstannylderivate herstellt. Denn die ¹¹⁹Sn-NMR-Spektren zeigen sofort, ob in Vinyl- oder Allylstellung deprotoniert worden und ob zweifache Deprotonierung eingetreten ist. Die Produkte lassen sich dann im Verein mit den ¹³C-NMR-Daten identifizieren.

Alkaliorganische Allylderivate von **1** sind im Gegensatz zu vielen anderen Allylverbindungen extrem instabil. Offenbar reicht die Wechselwirkung z.B. von Li⁺ mit der Doppelbindung zwischen C(8) und C(9) nicht aus, um die Retro-Diels-Alder-Reaktion zu unterbinden. Nur mit speziellen Übergangsmetallfragmenten [21] können zunächst die Doppelbindungen von **1** komplexiert und dann das Allylsystem gebildet werden.

Experimenteller Teil

Die Metallierungsversuche wurden in Standard-Schlenk-Technik unter Inertgas und mit Lösungsmitteln durchgeführt, die trocken und frei von Sauerstoff waren. Diese Schutzmassnahmen entfielen nach Abfangen mit Me₃SnCł. Die Elementaranalysen wurden vom mikroanalytischen Labor dieses Instituts durchgeführt.

1. Umsetzung von endo-Dicyclopentadien 1 mit t-BuLi / TMEDA

26.7 ml einer 1.7 molaren Lösung von t-BuLi (45.4 mmol) in Pentan wurden mit 200 ml Pentan verdünnt und auf $-78\,^{\circ}$ C gekühlt. Dazu wurden 6.8 ml (45.4 mmol) TMEDA getropft, was zu einem farblosen Niederschlag und einer zitronengelben Lösung führte. Diese Suspension wurde mit 6.00 g (45.4 mmol) 1. gelöst in 30 ml Pentan, versetzt und unter Rühren über Nacht auf 25 $^{\circ}$ C gebracht. Dabei entstand eine klare Lösung, die von orange nach farblos umschlug, als bei $-78\,^{\circ}$ C 17.60 g (88.3 mmol) Me₃SnCl in 50 ml Pentan zugegeben wurden. Nach Erwärmen auf

25°C wurde hydrolysiert, die Phasen getrennt, aus der organischen Phase Pentan entfernt und in einer Kurzwegapparatur [22] destilliert. Es wurden zwei Fraktionen gewonnen: (a) 20-32°C, 0.1 Pa; 4.05 g N-Trimethylstannylmethyl-N, N', N'-trimethylethylendiamin $C_9H_{24}N_2Sn$ und 1 im Molverhältnis 10.0/13.3 (^{13}C -NMR). (b) 32-40°C; 0.1 Pa; 6.52 g $C_9H_{24}N_2Sn$, 8-Trimethylstannyl-endo-dicyclopentadien 3 und 9-Trimethylstannyl-endo-dicyclopentadien 4 im Molverhältnis 5.3/5.5/7.3 (^{13}C - und ^{119}Sn -NMR). Gesamtausbeuten: 20.4% 3, 27.0% 4 (beide relativ zu umgesetztem 1) und 34.1% $C_9H_{24}N_2Sn$. $C_9H_{24}N_2Sn$: ^{13}C -NMR (Aceton- d_6): δ -8.87, 46.08, 46.89, 48.43, 58.55 und 60.09; ^{119}Sn -NMR (Aceton- d_6): δ -24.0; alle Daten sind in sehr guter Übereinstimmung mit Ref. [4].

2. Umsetzung von 1 mit n-BuLi / t-BuOK (1/3)

Zu einer Suspension von 15.28 g (136.2 mmol) t-BuOK in 400 ml Pentan wurden bei -78°C 60 ml einer 2.27 molaren Lösung von n-BuLi (136.3 mmol) in Hexan gegeben. Nach Zutropfen einer Lösung von 6.23 g (47.1 mmol) 1 in 30 ml Pentan wurde das Kühlbad entfernt und über Nacht gerührt. Es entstand ein karamelbraunes Gemisch, das auf -78°C gekühlt und mit 37.00 g (186.0 mmol) Me₃SnCl, gelöst in 200 ml Pentan, versetzt wurde. Beim langsamen Erwärmen auf 25°C trat bei -30°C schnelle Entfärbung ein. Das Produktgemisch wurde wie oben aufgearbeitet, wobei zwei Fraktionen erhalten wurden: (a) 42-48°C, 13 Pa; 3.83 g 3, 4 und 5,5-Bis(trimethylstannyl)cyclopentadien (5) im Molverhältnis 2.7/4.8/4.4 (13C- und 119Sn-NMR, die Elementaranalyse bestätigte ein Molverhältnis von 7.5/4.4 für 3 + 4/5), entsprechend 5.6% 3, 9.9% 4 und 9.1% 5 relativ zu 1. Bezüglich der Identifizierung von 5 siehe 4. (b) 84-86°C, 13 Pa; 7.64 g 4,8-Bis(trimethylstannyl)-endo-dicyclopentadien (6), 4,9-Bis(trimethylstannyl)-endodicyclopentadien (7) und 3,9-Bis(trimethylstannyl)-endo-dicyclopentadien (8) im Molverhältnis 2.8/3.8/4.0 (13C- und 119Sn-NMR) entsprechend 9.7% 6, 12.7% 7 und 13.4% 8 relativ zu 1.

C₁₆H₂₈Sn₂ (Isomerengemisch). Gef.: C, 42.09; H, 6.33. Ber.: C, 41.98; H, 6.17%.

3. Umsetzung von 1 mit n-BuLi / t-BuOK (1/1)

Mit 4.62 g (38.0 mmol) t-BuOK, 21.5 ml einer 1.77 molaren Lösung von n-BuLi (38.0 mmol) in Hexan, 5.00 g (38.0 mmol) 1 und 15.14 g (76.0 mmol) Me₃SnCl wurde wie unter 2. verfahren. Es fielen 6.33 g eines gelben Öls an, das 3 und 4 im Molverhältnis 6.3/18.2 enthielt (neben Spuren von 5, 6, 7 und 8: Molverhältnis 0.7/0.3/0.7/1.0, entsprechend Ausbeuten von 0.2%, 0.6%, 1.4% und 2.0%). Ausbeute: 12.5% 3, 36.0% 4.

4. Umsetzung von Cyclopentadien mit n-BuLi / t-BuOK

2.61 g (39.5 mmol) frisch destilliertes Cyclopentadien wurden mit 66.67 ml einer 1.77 molaren Lösung von n-BuLi (118.0 mmol) und 13.24 g (118.0 mmol) t-BuOK wie unter 2. beschrieben metalliert und aufgearbeitet. Die Destillation lieferte bei 20–22°C und 0.1 Pa 2.68 g (17.3%) ¹¹⁹Sn- und ¹³C-NMR-spektroskopisch reines 5,5-Bis(trimethylstannyl)cyclopentadien 5.

¹¹⁹Sn-NMR (Aceton- d_6): δ 9.8 im Einklang mit [23]. ¹³C-NMR (Aceton- d_6): δ(C(1/4)) 135.52, $^2J(^{119/117}\text{Sn}-^{13}\text{C})$ 9.1 Hz; δ(C(2/3)) 126.82, $^3J(^{119/117}\text{Sn}-^{13}\text{C})$ 24.7/23.2 Hz; δ(C(5)) 53.67, $^1J(^{119/117}\text{Sn}-^{13}\text{C})$ 193.9/185.5 Hz; δ(C(α)) -8.58, $^1J(^{119/117}\text{Sn}-^{13}\text{C})$ 347.7/332.3 Hz, $^3J(^{119/117}\text{Sn}-^{13}\text{C})$ 9.4.4 Hz im Einklang mit [24].

¹H-NMR (Aceton- d_6): $\delta(H(1/4))$ 6.51; $\delta(H(2/3))$ 6.69; $\delta(H(\alpha))$ 0.06, ${}^2J({}^{119/117}\mathrm{Sn}{}^{-1}\mathrm{H})$ 55/53 Hz im Einklang mit [25].

5. Exo- und endo-5-Trimethylstannyl-endo-dicyclopentadien (11 und 12)

18 g (ca. 85 mmol) rohes *exo / endo-*5-Brom-*endo*-dicyclopentadien (**10**) [6] wurden bei $-78\,^{\circ}$ C mit Me₃SnLi, bereitet aus 9 g (1.3 mol) Lithium-Spänen in 400 ml THF und 18.8 g (94.3 mmol) Me₃SnCl in 100 ml THF [26], versetzt. Nach Entfernen des Kühlbades wurde gerührt, bis 25 °C erreicht waren. Das Gemisch wurde mit 500 ml Wasser versetzt, viermal mit 100 ml Pentan extrahiert, die Lösungsmittel im Vakuum abgezogen und in einer Kurzwegapparatur destilliert. Bei 32–38 °C und 0.1 Pa gingen 6.11 g **11** und **12** im Molverhältnis 3.5/13.3 (¹¹⁹Sn- und ¹³C-NMR) entsprechend 3.5% **11** und 19.2% **12** relativ zu **10** über.

 $C_{13}H_{20}Sn$ (Isomerengemisch). Gef.: C, 51.74; H, 6.82. Ber.: C, 52.93; H, 6.83%. 11: ^{1}H -NMR (CDCl₃): $\delta(H(1))$ 3.02 (m); $\delta(H(2))$ 3.36 (m); $\delta(H(3))$ 5.53 (m); $\delta(H(4))$ 5.31 (m); $\delta(H(endo-5))$ 2.50 (m); $\delta(H(6))$ 2.8–2.9 (überlagert durch das H(1)-Signal von 12); $\delta(H(7))$ 2.73 (m); $\delta(H(8))$ 5.81 (d.d); $\delta(H(9))$ 5.87 (d.d); $\delta(H(syn-10)) \approx 1.4$ (überlagert durch das H(syn-10)-Signal von 12): $\delta(H(anti-10))$ 1.24 (d); $\delta(H(\beta))$ 0.11, $^{2}J(^{119}/^{117}Sn-^{1}H)$ 50.9/48.7 Hz.

12: 1 H-NMR (CDCl₃): δ (H(1)) 2.84 (s,breit); δ (H(2)) 3.18 (m); δ (H(3)) 5.48 (m); δ (H(4)) 5.24 (m); δ (H(ϵ xo-5)) 1.58 (m); δ (H(6)) 2.66 (d,tr); δ (H(7)) 2.80 (s, breit); δ (H(8)) 5.90 (d,d); δ (H(ϵ xyn-10)) 1.39 (d); δ (H(ϵ xnti-10)) 1.18 (d): δ (H(ϵ xyn-10)) 0.02, 2 J($^{119}/^{117}$ Sn- 1 H) 51.5/49.1 Hz.

6. Umsetzung von 11 und 12 mit MeLi

0.30 g (1.0 mmol) des Gemisches von 11 und 12 wurden bei -78° C in einem 5 mm-NMR-Rohr mit 0.83 ml einer 1.24 molaren Lösung von MeLi (1.0 mmol) in Ether versetzt. Dabei trat keine NMR-spektroskopisch erkennbare Reaktion ein (auch bis 25°C nicht). Daraufhin wurden einige Tropfen vorgekühltes THF so zugegeben, dass sie langsam an den gekühlten Wänden des NMR-Rohrs hinabliefen, was zum Start der Reaktion führte. Die unmittelbar folgende Aufnahme des ¹³C-NMR-Spektrums zeigte, dass 11 und 12 verschwunden und Cp sowie 1 im Molverhältnis 2/1 entstanden waren.

Zur Aufnahme der NMR-Spektren wurden die Geräte JEOL JNM-GX 270 bzw. Bruker CXP 200 verwendet. Als interner Standard dienten Aceton- d_6 mit $\delta(C^1HD_2)$ 2.04 und $\delta(^{13}CD_3)$ 29.80. Benzol- d_6 mit $\delta(^{13}C)$ 128.00, Chloroform- d_1 mit $\delta(^{14}HCl_3)$ 7.24 und $\delta(^{13}C)$ 77.00, und Me₄Sn mit $\delta(^{119}Sn)$ 0. Die Genauigkeit in ppm/Datenpunkt bzw. Hz/Datenpunkt betrug für 1H -, ^{13}C - und ^{119}Sn -Spektren 3.4 × 10⁻⁴ bzw. 0.09, 1.8 × 10⁻³ bzw. 0.12 und 9.9 × 10⁻³ bzw. 0.22. Für 1 gilt: $\delta(^{13}C) = \pm 1.1 \times 10^{-3}$ ppm und $^1J(^{13}C^{-13}C) = \pm 0.075$ Hz. Die Zuordnung der 1H -NMR-Signale von 11 und 12 wurde durch selektive Homoentkopplung und durch Vergleich mit den 1H -NMR-Daten von 1 [27] gesichert.

Dank

Wir danken Herrn Dr. W. Dietrich, Ruhr-Universität Bochum, für wertvolle Informationen aus einem unveröffentlichten INADEQUATE-Experiment, Herrn Dr. N. Hertkorn für die Aufnahme einiger Spektren und hilfreiche Diskussionen sowie dem Fonds der Chemischen Industrie, Frankfurt, für finanzielle Unterstützung.

Literatur

- (a) F.H. Köhler und N. Hertkorn, Z. Naturforsch. B, 38 (1983) 407; (b) F.H. Köhler und N. Hertkorn, Chem. Ber., 116 (1983) 3274; (c) N. Hertkorn, Dissertation TU München, 1987.
- 2 Neuere Arbeiten mit teilweise Review-Charakter: (a) J.B. Grutzner und W.L. Jorgensen, J. Am. Chem. Soc., 103 (1981) 1372; (b) E. Kaufmann, H. Mayr, J. Chandrasekhar und P. v. R. Schleyer, ibid., 103 (1981) 1375; (c) J.M. Brown, R.J. Elliott und W.G. Richards, J. Chem. Soc., Perkin Trans. II, (1982) 485; (d) W.N. Washburn, J. Org. Chem., 48 (1983) 4287; (e) N. Hertkorn, F.H. Köhler, G. Müller und G. Reber, Angew. Chem., 98 (1986) 462; Angew. Chem., Int. Ed. Engl., 25 (1986) 468; (f) M. Christl und D. Brückner, Chem. Ber., 119 (1986) 2025; (g) R.E. Lee und R.R. Squires, J. Am. Chem. Soc., 108 (1986) 5078; (h) R. Lindh, B.O. Roos, G. Jonsäll und P. Ahlberg, ibid., 108 (1986) 6554; (i) P. v. R. Schleyer, E. Kaufmann, A.J. Kos, H. Mayr und J. Chandrasekhar, J. Chem. Soc., Chem. Commun., (1986) 1583.
- 3 (a) J. Chatt, L.M. Vallarino und L.M. Venanzi, J. Chem. Soc., (1957) 2496; (b) ibid., (1957) 3413; (c) T.G. Traylor und A.W. Bakes, J. Am. Chem. Soc., 85 (1963) 2746; (d) J.K. Stille und S.C. Stinson, Tetrahedron, 20 (1964) 1387; (e) J.K. Stille, R.A. Morgan, D.D. Whitehurst und J.R. Doyle, J. Am. Chem. Soc., 87 (1965) 3282; (f) J.K. Stille und R.A. Morgan, ibid., 88 (1966) 513.
- 4 F.H. Köhler, N. Hertkorn und J. Blümel, Chem. Ber., im Druck.
- 5 A. Streitwieser, Jr. und D.W. Boerth, J. Am. Chem. Soc., 100 (1978) 750.
- 6 V.A. Mironov, V.T. Luk'yanov und A.A. Bernardskii, J. Org. Chem. USSR, 20 (1984) 61.
- 7 R.B. Woodward und T.J. Katz, Tetrahedron, 5 (1959) 70.
- 8 E.S. Bowman, G.B. Hughes und J.B. Grutzner, J. Am. Chem. Soc., 98 (1976) 8273.
- 9 W. Neukam und W. Grimme, Tetrahedron Lett., (1978) 2201.
- 10 A. Streitwieser, Jr., M.J. Kaufman, D.A. Bors, J.R. Murdoch, C.A. MacArthur, J.T. Murphy und C.C. Shen, J. Am. Chem. Soc., 107 (1985) 6983.
- 11 (a) F.H. Köhler und W.A. Geike, J. Organomet. Chem., 328 (1987) 35; (b) F.H. Köhler, W.A. Geike und N. Hertkorn, J. Organomet. Chem., 334 (1987) 359.
- 12 (a) K. Nakagawa, S. Iwase, Y. Ishi, S. Hamanaka und M. Ogawa, Bull. Chem. Soc. Japn., 50 (1977) 2391; (b) K. Roth, Org. Magn. Reson., 10 (1977) 56; (c) L.F. Johnson und W.C. Jankowski, Carbon-13 NMR Spectra, Wiley, New York, 1967, S. 372.
- 13 W. Dietrich, unveröffentlicht.
- 14 B. Wrackmeyer, Ann. Rep. NMR Spectrosc., 16 (1985) 73.
- 15 D. Young und W. Kitching, J. Org. Chem., 50 (1985) 4098, zit.Lit.
- (a) H.G. Kuivila, J.L. Considine, R.H. Sarma und R.J. Mynott, J. Organomet. Chem., 111 (1976) 179;
 (b) T.N. Mitchell und C. Kummetat, ibid., 157 (1978) 275.
- 17 T.N. Mitchell, Org. Magn. Reson., 8 (1976) 34.
- 18 P.E. Hansen, Ann. Rep. NMR Spectrosc., 15 (1983) 106.
- 19 (a) H. Günther, H. Seel und M.-E. Günther, Org. Magn. Reson., 11 (1978) 97; (b) R. Aydin, H. Günther, J. Runsink, H. Schmickler und H. Seel, ibid., 13 (1980) 210.
- 20 T.N. Mitchell, persönliche Mitteilung.
- 21 (a) J. Lewis und A.W. Parkins, J. Chem. Soc. A, (1969) 953; (b) C. White, S.J. Thompson und P.M. Maitlis, J. Chem. Soc., Dalton Trans., (1978) 1305.
- 22 F.H. Köhler und W. Prössdorf, Z. Naturforsch. B, 32 (1977) 1026.
- 23 N.M. Sergeyev, Progr. NMR Spectrosc., 9 (1973) 71.
- 24 (a) Yu.K. Grishin, N.M. Sergeyev und Yu.A. Ustynyuk, Org. Magn. Reson., 4 (1972) 377; (b) Yu.K. Grishin, Yu.A. Lutzikov und Yu.A. Ustynyuk, Dokl. Akad. Nauk. SSSR, 216 (1974) 321.
- 25 Yu.A. Ustynyuk, A.V. Kisin und A.A. Zenkin, J. Organomet. Chem., 37 (1972) 101.
- 26 W. Kläui und H. Werner, J. Organomet. Chem., 54 (1973) 331.
- 27 (a) K.C. Ramey und D.C. Lini, J. Magn. Reson., 3 (1970) 94; (b) N.M. Sergeyev, G.I. Avramenko, V.A. Korenevsky and Yu.A. Ustynyuk, Org. Magn. Reson., 4 (1972) 121.